
Biodiversidade e Mudanças Climáticas

O desafio de manter as conexões de vida na Amazônia

Amazônia sob pressão: ameaças à biodiversidade

A Amazônia é resultado de processos evolutivos e ecológicos complexos ocorridos ao longo de milhões de anos. Ela abriga cerca de 10% de todas as espécies conhecidas, incluindo 40.000 plantas, mais de 2.400 peixes de água doce, 1.300 aves, 425 mamíferos, 427 anfíbios e 371 répteis; muitos endêmicos e ameaçados de extinção. A manutenção dessa diversidade depende da integridade de processos como conectividade florestal, migração, fluxo gênico, polinização e dispersão de sementes.

Porém, essa riqueza está sob crescente ameaça. Cerca de 18% da Amazônia já foi desmatada e 17% estão degradados, em um ritmo muito mais rápido que a capacidade de regeneração das espécies, resultado de pressões humanas centenas a milhares de vezes acima dos processos naturais.¹ As principais causas dessas altas taxas são a conversão de vegetação nativa para pecuária e agricultura, abertura de estradas e infraestruturas sem controle do Estado e que facilitam a ocupação irregular, extração ilegal de madeira, garimpo, e incêndios associados ao uso ilegal do fogo.²

A superexploração da fauna e flora agrava o quadro. Por exemplo, a pesca excessiva e desordenada reduz a capacidade de recuperação dos estoques de peixes e leva à substituição por espécies menores e menos produtivas.³ Somado a isso, as mudanças climáticas agem como um acelerador dessas pressões. O aumento da temperatura, o prolongamento da estação seca e a maior aridez ampliam o estresse sobre florestas e ecossistemas aquáticos, criando um ciclo que se aproxima do ponto de não retorno.^{5,6}

Impactos das Mudanças Climáticas: Transformações em Curso na Amazônia

As mudanças climáticas estão reconfigurando as condições físicas e biológicas da Amazônia, além de atuar como um multiplicador das outras pressões humanas. O aquecimento regional, a alteração do ciclo de chuvas e a maior frequência de eventos extremos (secas severas, inundações atípicas e ondas de calor) não apenas aumentam mortalidade e perdas imediatas de biodiversidade, mas também reduzem a capacidade de recuperação dos ecossistemas.⁶

ALTERAÇÕES NO CICLO HIDROLÓGICO E EVENTOS EXTREMOS

As mudanças climáticas podem prolongar substancialmente a estação seca na Amazônia. Em simulações combinadas de cenários de aquecimento e perda florestal, a estação seca aumentaria, em média, 69% na bacia amazônica (o que corresponde a até 60 dias a mais sem chuva em muitas áreas). Essa ampliação reduz a umidade do solo e os refúgios essenciais para plantas e animais, transformando uma variação sazonal em uma nova condição persistente do ambiente.⁶

Com menos umidade acumulada ao longo do ano, a floresta se torna estruturalmente mais seca. Isso provoca estresse hídrico, mortalidade de árvores, menor crescimento e alteração nos ciclos de floração e frutificação, reduzindo a resiliência das paisagens. Ao mesmo tempo, a vulnerabilidade ao fogo cresce, sobretudo em áreas fragmentadas, onde bordas de mata e pequenos fragmentos perdem umidade mais rapidamente, tornando-se pontos de ignição. Estudos mostram que os incêndios aumentaram especialmente em florestas abertas e em zonas de transição, e que sua repetição provoca perda de biomassa, degradação do solo e mortalidade de árvores,7 efeitos difíceis de reverter.

Essas mudanças interagem com o ciclo hidrológico de várzeas, igarapés e planícies de inundação, que funcionam como berçários dos peixes amazônicos. Muitos destes animais sincronizam sua reprodução com o pulso das águas (ciclos de cheia e vazante dos rios), que garantem habitats reprodutivos, alimento e proteção para peixes em estágio juvenil. Quando a estação das cheias encurta, o período favorável para desova e crescimento juvenil encolhe. Estudos mostram que anos secos reduzem a proporção de fêmeas em condição de desovar e o tamanho das fêmeas maduras. Sinais de menor sucesso reprodutivo e de recrutamento, efeitos críticos quando combinados com pesca intensiva. As implicações socioeconômicas são imediatas. Comunidades ribeirinhas, cuja alimentação e renda dependem da pesca, enfrentam estoques reduzidos, peixes de menor porte e maior insegurança alimentar em anos consecutivos de seca.

Glossário

OUTRAS MEDIDAS EFICAZES DE CONSERVAÇÃO BASEADAS EM ÁREA (OMECS)

Áreas geograficamente definidas que não têm com objetivo primário a conservação, mas que são governadas e manejadas de forma a garantir resultados positivos e duradouros para a conservação in situ da biodiversidade, como territórios indígenas e áreas manejadas por comunidades locais.

CONTRIBUIÇÕES NACIONALMENTE DETERMINADAS (NDCs

Compromissos assumidos por cada país no âmbito do Acordo de Paris, que definem metas e ações para reduzir emissões de gases de efeito estufa e se adaptar às mudanças climáticas.

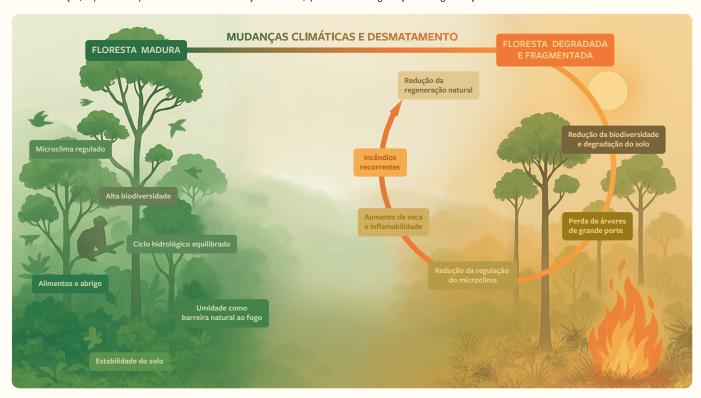
ESTRATÉGIAS E PLANOS DE AÇÃO NACIONAIS PARA A BIODIVERSIDADE (EPANBs)

Documentos estratégicos elaborados por cada país para orientar seus esforços de proteção da biodiversidade e garantir seu uso sustentável, em cumprimento às obrigações da Convenção sobre Diversidade Biológica (CDB) e alinhados a metas globais, como o Quadro Global da Biodiversidade de Kunming-Montreal.

REDES AMAZÔNICAS TEMÁTICAS DA OTCA (RAFO, RADA E RAMIF)

Instâncias de cooperação técnica coordenadas pela OTCA que reúnem autoridades e especialistas dos países amazônicos em áreas estratégicas para a gestão sustentável dos recursos naturais, compartilhar experiências e harmonizar políticas públicas. São elas: i) Rede Amazônica de Autoridades Florestais (RAFO), ii) de Autoridades da Água (RADA) e de iii) Manejo Integrado do Fogo (RAMIF).

MUDANÇAS NA VEGETAÇÃO E ECOSSISTEMAS


A floresta amazônica não responde de forma uniforme às mudanças climáticas: áreas, espécies e suas interações apresentam vulnerabilidades distintas. Modelos apontam que a combinação de desmatamento e aquecimento pode reduzir chuvas, prolongar a estação seca e intensificar extremos de temperatura. Essas condições favorecem a substituição de parte da floresta por vegetação mais aberta, num processo de "savanização" projetado para ocorrer especialmente em bordas já degradadas e fragmentadas. Em algumas regiões, essa transição pode se consolidar em poucas décadas se as pressões atuais persistirem.⁶

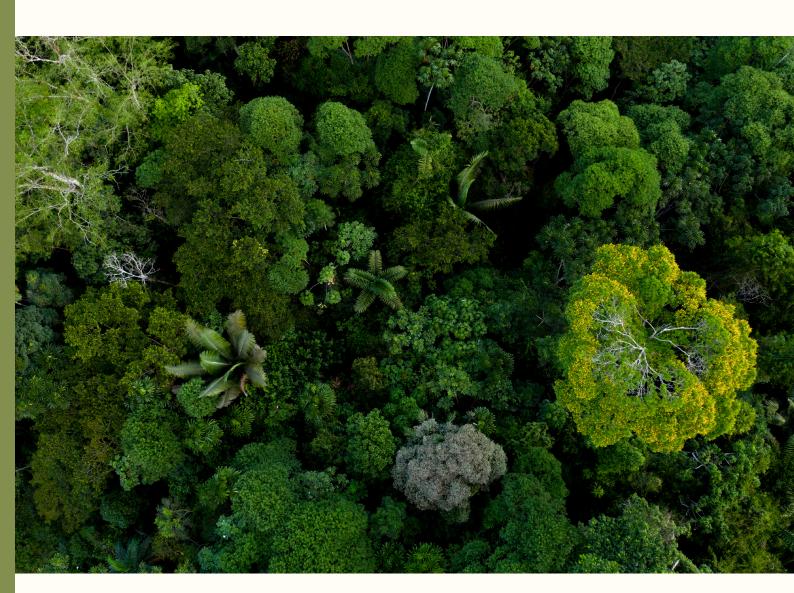
Sinais de transformação já são detectáveis em inventários florestais de longo prazo e em coleções botânicas. Pesquisas com séries de 30 a 60 anos revelam mudanças consistentes na

estrutura da floresta: espécies arbóreas mais tolerantes à seca aumentam, enquanto as dependentes de umidade declinam. Alterações em traços como tamanho e forma das folhas indicam adaptação a ambientes mais secos e quentes que, no entanto, não compensa a perda de diversidade, levando a uma floresta menos variada e resiliente.9

Em conjunto, esses processos sinalizam que a Amazônia segue uma trajetória de mudança estrutural que ameaça sua biodiversidade e os serviços ecossistêmicos. A transição para ecossistemas mais abertos significa perda de carbono, redução de chuvas regionais e empobrecimento da base de recursos naturais de milhões de pessoas. Ao contrário das cheias e secas naturais do ciclo amazônico, tratase agora de mudanças profundas e persistentes, que elevam o risco de pontos de não retorno.

Figura. Contraste entre floresta madura e floresta degradada: à esquerda, atributos e serviços de remanescentes íntegros que sustentam o ecossistema; à direita, o ciclo de retroalimentação, impulsionado por desmatamento e mudanças climáticas, que aceleram a degradação e a fragmentação da floresta

IMPACTOS NA VIDA SELVAGEM E NAS CADEIAS ALIMENTARES


As mudanças climáticas alteram profundamente as interações entre espécies ao modificar seu comportamento, ciclos de vida, quantidade e distribuição geográfica. Um dado crítico para comunidades extrativistas. Essas alterações podem provocar desencontros espaciais e temporais (por exemplo, plantas que florescem fora do período de atividade dos polinizadores), reconfigurar a teia alimentar, e até inverter ou amplificar efeitos indiretos, com consequências maiores do que os impactos diretos das mudanças climáticas sobre espécies isoladas.^{10,11}

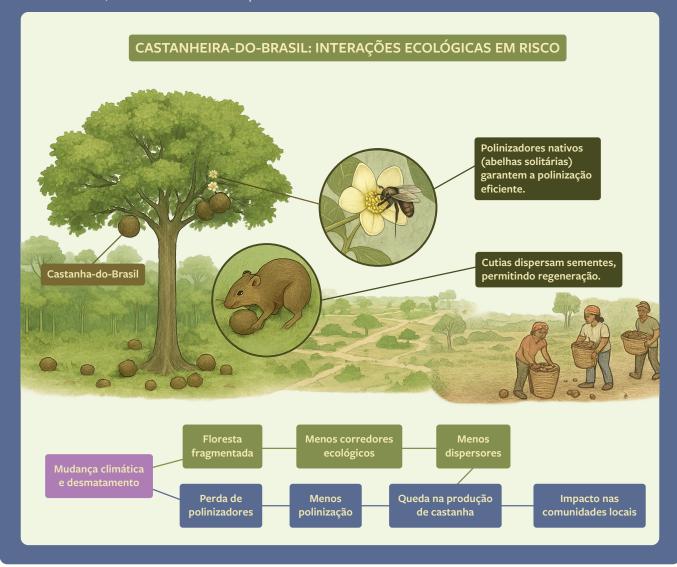
Estudos de caso na Amazônia ilustram os impactos da combinação de mudanças climáticas, perda de habitat e fragmentação florestal. Modelagens com primatas apontam incompatibilidade entre esses animais e as árvores que dependem deles para dispersar sementes, levando ao colapso desse serviço, menor recrutamento de árvores e empobrecimento da diversidade, sobretudo de espécies de grande valor ecológico.¹²

Em fragmentos pequenos (<100 ha), análises de teias alimentares mostram que as redes predador-presa ficam simplificadas e espécies perdem interações essenciais, o que pode levar à explosão de presas,

desaparecimento de predadores e a mudanças na regeneração vegetal.¹³ A defaunação (redução na abundância e presença de grandes vertebrados) intensifica esses efeitos. A perda de grandes mamíferos e aves compromete a dispersão de sementes, ciclagem de nutrientes e controle de herbívoros. Sem esses "engenheiros" e dispersores, a regeneração favorece espécies vegetais de crescimento rápido e menor biomassa, reduzindo estoques de carbono e a oferta de frutos e sementes.¹⁴

O declínio de polinizadores e dispersores gera também efeitos em cascata. A redução da dispersão de sementes concentra as áreas de regeneração florestal, a diversidade estrutural cai (menos estratos e menos espécies de grande porte). Isso provoca queda na oferta de frutos e sementes para frugívoros, redução de predadores, alterando suas abundâncias, comportamentos e reconfigurando a teia alimentar. Somadas, essas mudanças podem empurrar o ecossistema para um ponto de não retorno, resultando num estado alternativo menos diverso e capaz de fornecer serviços essenciais. Transições que, segundo estudos na Amazônia, podem ocorrer de forma rápida e ser difíceis de reverter, o que torna a prevenção muito mais eficaz e menos custosa do que tentar recuperar o sistema após o colapso.⁵

A castanheira-do-Brasil


A castanheira-do-Brasil (Bertholletia excelsa) é uma espécie emblemática da Amazônia. Árvore de longa vida que sustenta cadeias produtivas extrativistas, gera renda familiar e preserva valores culturais de comunidades tradicionais. Sua reprodução e produção de castanhas dependem de interações específicas: polinizadores (abelhas nativas e solitárias, como a mamangava) e dispersores (principalmente cutias), tornando-a sensível não só ao corte de árvores, mas ao desencaixe dessa rede de espécies.

Um estudo¹⁵ que combinou modelos climáticos, simulações de perda de floresta e limites à dispersão mostra um quadro preocupante para a interação entre a castanheira-do-Brasil e seus animais parceiros. A área com clima ainda adequado para a árvore pode permanecer estável ou até crescer um pouco até 2090, mas os polinizadores sofrem perdas muito maiores de habitat: para algumas espécies a sobreposição espacial com a castanheira pode cair em até 80%, e a riqueza local de polinizadores tende a reduzir em torno de 20% — o que pode

deixar plantas sem polinizadores eficazes em muitas áreas. Algumas abelhas-chave podem perder totalmente condições climáticas análogas, abrindo caminho para extinções locais. Já os dispersores de sementes mostram respostas variadas: enquanto algumas espécies mantêm ou ampliam sua área potencial, outras recuam, de modo que a sobreposição da área de ocorrência da castanheira com dispersores é, em média, menos afetada do que a dos polinizadores. Essas mudanças indicam que, mesmo se as árvores persistirem, a quebra das interações com animais polinizadores e dispersores pode comprometer a reprodução e a coleta sustentável da castanha.

Os achados mostram que conservar só as castanheiras não garante a produção de castanha. É preciso preservar florestas contínuas e corredores ecológicos, alinhado com políticas contra o desmatamento e com estratégias de adaptação climática. Sem essa abordagem integrada, a produção sustentável da castanha está em risco.

Figura. Da flor ao cesto: como a perda de polinização e dispersão, impulsionada por mudanças climáticas e desmatamento, interrompe o ciclo produtivo da castanheira-do-Brasil, reduz a oferta de castanhas e ameaça os meios de vida das comunidades locais.

Recomendações

PROMOVER A COOPERAÇÃO REGIONAL PARA ENFRENTAR OS DESAFIOS REGIONAIS DA AMAZÔNIA

A implementação do Programa de Diversidade Biológica da OTCA contribui para esse esforço, servindo como uma estrutura de orientação de longo prazo para o desenvolvimento e a implementação de ações estratégicas. A Avaliação Regional sobre Diversidade Biológica e Serviços Ecossistêmicos da Amazônia (2023) da OTCA serve como base para decisões informadas e integradas, fortalecendo a interface entre ciência, política e sociedade.

INTEGRAR AS AGENDAS DE BIODIVERSIDADE E CLIMA

As estratégias de conservação devem buscar sinergia entre as metas da Convenção sobre a Diversidade Biológica (CDB) e da Convenção-Quadro das Nações Unidas sobre a Mudança do Clima (UNFCCC), assegurando que as Contribuições Nacionalmente Determinadas (NDCs) e as Estratégias e Planos de Ação Nacionais para a Biodiversidade (EPANBs) dos países estejam alinhadas para uma agenda conjunta de mitigação climática e conservação.

FORTALECER O CONHECIMENTO E O MONITORAMENTO DA BIODIVERSIDADE

Aprimorar o monitoramento de espécies e ecossistemas da região por meio da compilação e sistematização de informações conduzidas em cada país amazônico. O ORA é uma plataforma estratégica para identificar lacunas e fortalecer a gestão do conhecimento na região, possibilitando harmonizar indicadores e dados e o acompanhamento do progresso em relação às metas nacionais e internacionais. A cooperação entre as Redes Temáticas da OTCA, como as Redes Amazônicas de i) Autoridades Florestais (RAFO); ii) Autoridades de Água (RADA) e iii) Manejo Integrado do Fogo (RAMIF), ampliam a capacidade dos países e a sinergia entre eles.

PROTEGER E VALORIZAR O CONHECIMENTO TRADICIONAL

A governança da biodiversidade deve incluir o fortalecimento da gestão e da proteção dos conhecimentos tradicionais associados à biodiversidade, garantindo o consentimento prévio e a repartição justa dos benefícios, respeitando as legislações nacionais e os direitos dos Povos Indígenas e comunidades locais e tradicionais.

PROMOVER O USO SUSTENTÁVEL DA BIODIVERSIDADE

As políticas devem fortalecer o uso sustentável da biodiversidade, com ênfase na distribuição justa e equitativa dos benefícios para garantir a persistência da biodiversidade e das comunidades extrativistas. A OTCA elaborou um Guia para o Investimento Sustentável e a Cooperação Internacional em Biodiversidade e Ecossistemas Amazônicos (2024) como ferramenta para priorizar projetos a serem implementados com Povos Indígenas e comunidades locais.

FORTALECER AS ÁREAS PROTEGIDAS E A CONECTIVIDADE DE ECOSSISTEMAS

Aumentar a eficiência da rede existente de áreas protegidas e outras medidas eficazes de conservação baseadas em área (OMEC), fortalecendo gestão e articulação estratégica com outras políticas públicas; promover corredores ecológicos e a restauração de vegetação nativa para reduzir a vulnerabilidade frente às mudanças climáticas.

Trajetórias Amazônicas: Cenários para 2030 e 2050

As figuras abaixo resultam da média de modelos climáticos do CMIP6 que estimam a projeção da mudança de temperatura para 2030 e 2050, no cenário em que as emissões atuais de gases de efeito estufa se mantêm (SSP-245), com a sobreposição da malha de áreas protegidas da Amazônia (incluindo Terras Indígenas). Os mapas indicam onde o aumento médio de temperatura poderá ser maior em cada ano e identificam quais áreas protegidas poderão ultrapassar limiares críticos estabelecidos pelo Acordo de Paris, como +1,5 °C e +2 °C. O IPCC alerta que os riscos à biodiversidade crescem de forma abrupta quando o aquecimento sobe acima desses valores, aumentando as extinções locais e globais.

Áreas protegidas são a principal estratégia de conservação da biodiversidade, com efeitos positivos em todo o planeta, e cobrem quase metade da Amazônia. As TIs também foram incluídas, pois são territórios chave para a conservação da vegetação nativa e ecossistemas cruciais para a manutenção da biodiversidade amazônica em sintonia com os moradores dessas áreas. Porém, mesmo com ampla proteção territorial nos países amazônicos, a biodiversidade das áreas protegidas será afetada se o aquecimento global não for contido.

Figura. Distribuição das Áreas Protegidas e Territórios Indígenas na Amazônia (à esquerda); Variação de temperatura projetada para 2030 (ao centro) e para 2050 (à direita) para o cenário SSP-245 nos modelos climáticos CMIP6.

O QUE OS MAPAS REVELAM

De acordo com os modelos climáticos CMIP6 (cenário SSP-245), o aquecimento é projetado em toda a Amazônia, mas é estimado que seja mais intenso nas regiões centro-norte, centro-leste e sul. Em 2030, poderá haver calor adicional em milhares de áreas protegidas, algumas ultrapassando 1,4 °C. Embora o aumento local ainda esteja, em geral, abaixo do limiar de 1,5 °C, as mudanças térmicas podem alterar os ciclos de vida e comportamentos das espécies. Em 2050, a vulnerabilidade ao aumento extremo da temperatura pode se tornar mais intensa, com diversas áreas podendo ultrapassar 1,5 °C e até 2 °C. Isso significa que regiões cruciais para a conservação da biodiversidade estarão sujeitas a climas bem diferentes daqueles que as espécies estão adaptadas.

Com o aquecimento acima de 1,5-2 °C, áreas protegidas podem perder sua condição climática adequada, deixando de oferecer refúgio a muitas espécies. Em outras palavras, a proteção legal deixa de equivaler à proteção ecológica quando o clima muda. Alguns grupos respondem cedo e de forma acentuada ao aquecimento, como anfíbios, répteis, peixes e polinizadores. O declínio desses grupos indicadores pode sinalizar a degradação do ecossistema, ressaltando a necessidade de ações urgentes de mitigação e adaptação às mudanças climáticas antes de um impacto crítico em diversas espécies. A conservação, portanto, precisa ir além da delimitação das áreas protegidas, com conectividade, gestão adaptativa, restauração e, especialmente, conter o aumento da temperatura global.

Referências

- 1 Albert et al. (2023). Human impacts outpace natural processes in the Amazon, Science, 379(6630).
- 2 Lapola et al. (2023) The drivers and impacts of Amazon forest degradation. Science, 379 (6630).
- 3 Heilpern et al. (2022). Biodiversity underpins fisheries resilience to exploitation in the Amazon river basin. Proceedings of the Royal Society B Biological Sciences, 289(1976).
- 4 Peres et al. (2003). Demographic threats to the sustainability of Brazil nut exploitation. Science, 302(5653), 2112-2114.
- 5 Flores et al. (2024). Critical transitions in the Amazon forest system. Nature, 626(7999), 555-564.
- 6 Bottino et al. (2024). Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Scientific Reports, 14(1).
- 7 Alencar et al. (2015). Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications, 25(6), 1493-1505.
- 8 Röpke et al. (2022). Effects of climate driven hydrological changes in the reproduction of Amazonian floodplain fishes. Journal of Applied Ecology, 59(4), 1134-1145.
- 9 Stropp et al. (2017). Drier climate shifts leaf morphology in Amazonian trees. Oecologia, 185(3), 525-531.
- 10 Neumann et al. (2024). Model based impact analysis of climate change and land use intensification on trophic networks. Ecography.

- 11 Åkesson et al. (2021). The importance of species interactions in eco-evolutionary community dynamics under climate change. Nature Communications, 12(1).
- 12 Sales et al. (2020). Climate niche mismatch and the collapse of primate seed dispersal services in the Amazon. Biological Conservation, 247, 108628.
- 13 Pires et al. (2022). Terrestrial food web complexity in Amazonian forests decays with habitat loss. Current Biology, 33(2), 389-396.e3.
- 14 Da Silva Batista et al. (2025). Defaunation disrupts the behavior of large terrestrial vertebrates impacting ecological functions in the Amazon. Global Ecology and Conservation, e03522.
- 15 L. P. Sales et al. (2020). Climate change drives spatial mismatch and threatens the biotic interactions of the Brazil nut. Global Ecology and Biogeography, 30(1), 117-127.
- 16 RAISG (2025). Protected Areas of the Pan-Amazon Region. Disponível em: https://raisg.org/pt-br/mapas/
- 17 Spindel, M. (2025). Povos Indígenas e Mudanças Climáticas: Desafios Globais e respostas locais. Trajetórias Amazônicas nº5 [Policy Brief]. Organização do Tratado de Cooperação Amazônica (OTCA).
- 18 Vale, L. (2025). Extremos Climáticos e Adaptação Climática na Amazônia. Trajetórias Amazônicas nº8 [Policy Brief]. Organização do Tratado de Cooperação Amazônica (OTCA).

SUGESTÃO DE CITAÇÃO

Universidade Federal de Goiás, com período na James Cook University (Austrália). Especialista em planejamento sistemático para conservação, atua com políticas públicas e

OORDENAÇÃO CIENTÍFICA ORA naldo Carneiro

Lis Vale, Maycon Castro, Maria Fernanda Ribeiro, Mathias Alvarez

Ubirajara Oliveira, Miguel, Jarno Verdonk, Banco OTCA

para a Organização do Tratado de Cooperação Amazônica (OTCA), elaborada com o propósito de subsidiar e enriquecer o debate regional. As opiniões, análises e interpretações aqui apresentadas correspondem exclusivamente a seus autores. Seu conteúdo não reflete necessariamente a posição oficial da OTCA nem de seus Países Membros. As informações apresentadas passaram por curadoria técnica que respalda sua credibilidade.

É o centro de referência da OTCA que integra dados, testa inovações e dissemina

A OTCA é uma organização intergovernamental, formada por oito países amazônicos: Bolívia, Brasil, Colômbia, Equador, Guiana, Peru, Suriname e Venezuela, que assinaram o Tratado de

SEPN 510, Bloco A, 3° andar – Asa Norte | Brasília (DF), Brasil, CEP: 70.750-52 ora@otca.org | https://www.oraotca.org/

